

Biochemical Engineering

Exercise Session 6

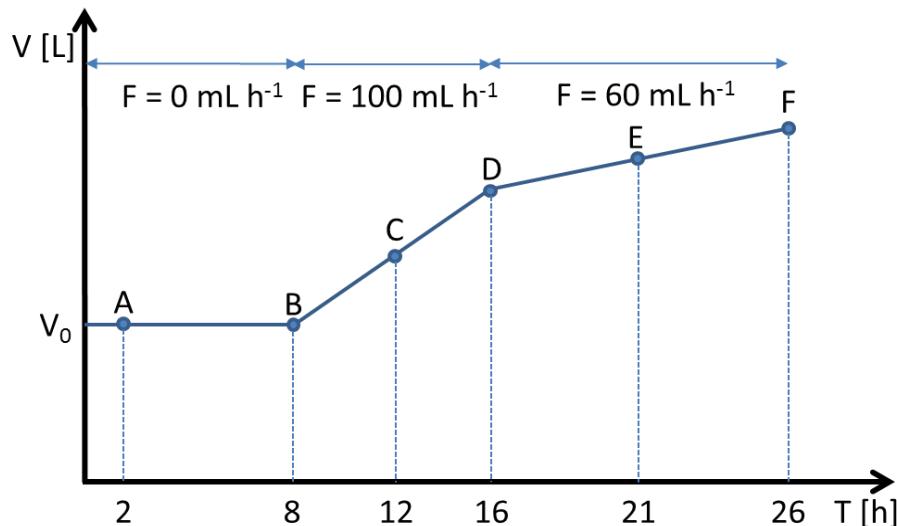
1) Constant feed fed-batch

In a fed-batch culture of *Escherichia coli* operating with feed of a glucose solution, values of the following parameters are given at time $t = 2$ h, when the system is at quasi-steady state.

$$\begin{array}{ll} V = 1000 \text{ mL} & dV/dt = 200 \text{ mL h}^{-1} \\ S_0 = 100 \text{ g glucose L}^{-1} & \mu_{\max} = 0.3 \text{ h}^{-1} \\ K_s = 0.1 \text{ g glucose L}^{-1} & Y_{X/S} = 0.5 \text{ g cells (g glucose)}^{-1} \\ X_0 = 30 \text{ g (total} = x_0 \text{)} & \end{array}$$

- Find V_0 (the initial volume of the culture)
- Determine the concentration of growth-limiting substrate in the vessel at quasi-steady state at $t = 2$ h.
- Determine the concentration and total amount of biomass in the vessel at $t = 2$ h (at quasi-steady state)
- If $q_p = 0.2 \text{ g product (g cells)}^{-1} \text{ h}^{-1}$, $p_0 = 0$, determine the concentration of product in the vessel at $t = 2$ h.

2) Design of a multi-phase fed-batch for the production of lipase


A fed-batch for the production of a lipase is carried out with a recombinant strain *Yarrowia lipolytica* (see also figure below):

Phase 1: Batch on glucose (s_0 (Glucose) = 6 g L⁻¹)

Phase 2: Fed-batch on glycerol Feed1 s_0 (Glyc) = 1260 g L⁻¹

Phase 3: Fed-batch on lactose with Feed2 s_0 (Lact) = 500 g L⁻¹.

Inoculum batch : $X_0 = 0.1 \text{ g}$

Questions:

a) Calculate the culture volume of the bioreactor at times B, C, D, E, and F
Note: $V_0 = A = 2.0 \text{ L}$

B : C : D : E : F :

b) Calculate the dilution rates for the time points A, C, and E.

A:; C:; E:

c) Calculate the total biomasses for the time points B, D, and F.

Note: $Y_{X/\text{Gluc}} = 0.5 \text{ g g}^{-1}$, $Y_{X/\text{Glyc}} = 0.1 \text{ g g}^{-1}$, $Y_{X/\text{Lact}} = 0.3 \text{ g g}^{-1}$

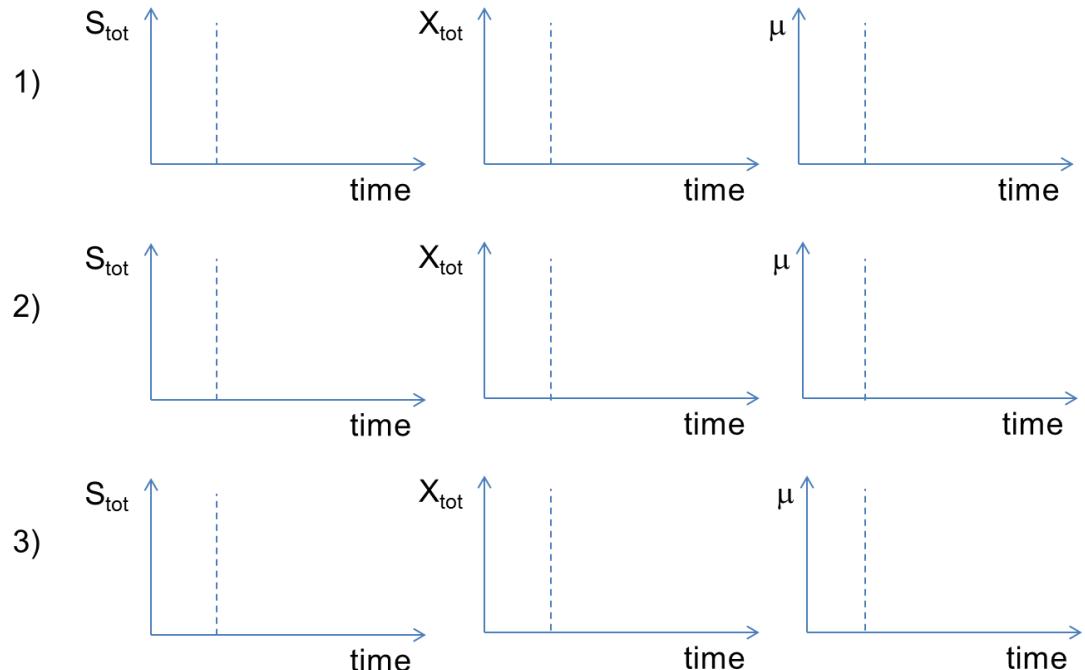
B:; D:; F:

d) Calculate the concentration of lipase at the end of the fed-batch (time point F).

Note: $Y_{\text{Lipase}/X} (\text{Glucose}) = 0 \text{ g g}^{-1}$, $Y_{\text{Lipase}/\text{Glyc}} = 0.01 \text{ g g}^{-1}$, on lactate: $Y_{\text{Lipase}/X} = 0.5 \text{ g g}^{-1}$

F:

e) Calculate volumetric productivity of lipase and of the biomass for the *whole* bioprocess (time point F).


F:

3) Different feed profiles

Please complement the following figures with the trends you are expecting for the respective parameters for the following feed conditions:

1) Exponential feed; 2) Pulsed feed; 3) Constant feed

Note: Dashed line represents end of batch culture

